Monday Night Calculus, January 10, 2022

1. What happens if f” flatlines at O for a while? (Jen Spoerke)
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Graph of g

3. The graph of the continuous function g, the derivative of the function f, is shown above. The function g is

piecewise linear for —5 < x < 3, and g(x) = 2(x — 4)2 for3<x<6.

(a) If f(1) = 3, what is the value of f(—5) ?

6
(b) Evaluate L g(x) dx.

(¢) For —5 < x < 6, on what open intervals, if any, is the graph of f both increasing and concave up? Give a
reason for your answer.

(d) Find the x-coordinate of each point of inflection of the graph of f. Give a reason for your answer.
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(c) The graph of f is increasing and concave upon 0 < x < 1 and 4 < x < 6 because
f'(x) = g(x) > 0and f'(x) = g(x) is increasing on those intervals.

(d) The graph of f has a point of inflection at x = 4 because f'(x) = g(x) changes from
decreasing to increasing at x = 4.
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2. Letg(x) = / f(t) dt with the graph of f shown in the figure and a is a constant. Find the

x-values of garegarding each of the following conditions. (Brendan Hughes)

(a) Relative minimum(s)

g'(x) = f(x)

g has a relative minimum at x = 8 because g’(x) = f(x) changes from negative to
positive there.

(b) Relative maximum(s)

g has a relative maximum at x = 6 because g’(x) = f(x) changes from positive to
negative there.

(c) Concave up

g is concave up on the intervals (0, 2) and (7, 9) because g’(x) = f(x) is increasing on
those intervals.

(d) Concave down

g is concave down on the interval (3, 7) because g’(x) = f(x) is decreasing on that
interval.

(e) Increasing: [1, 6], [8,9]
Decreasing: [6, 8]
Points of inflection: x =7

(f) If g(2) = 1, what is the maximum value of g on the interval [2, 9]?

g(6)=/a6f(z)dz =/azf(z)dz+/:f(t)dt
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5+5
(g) Suppose h(x) = / f(t) dt. Find the x-value where /4 has a relative minimum.
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(1 + x2)2 dx =1 (Karen Martin Swift)
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5. Find the solution of the differential equation that satisfies the initial condition.

dy  xsinx

= , 0) = —1
o ’ y(0)

ydy = xsinx dx

y2

= —xcosx +sinx + C Integration by parts

1 1
3= 0+0+C = C= 3 Use initial condition

y? = —2xcosx 4+ 2sinx + 1

y = —+/1 —2xcosx + 2sinx because y(0) = —1 <0
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