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BC Calculus Mock Exam BC 1

BC 1

The graph of g′, the derivative of a twice-differentiable function g is shown in the figure.
The graph has exactly one horizontal tangent line in the interval −1 to 10, at x = 4.2.

Graph of g′

R is the region in the first quadrant bounded by the graph of g′ and the x-axis from

x = 0 to x = 9. It is known that g(0) = −7, g(9) = 12, and

∫ 9

0

g(x) dx = 27.6.
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(c) Find the area of the region R.

Key Concepts

Suppose f(x) ≥ 0 for a ≤ x ≤ b and f is continuous on [a, b].

The definite integral

∫ b

a

f(x) dx can be interpreted as the area of the region bounded

above by the graph of y = f(x), below by the x-axis, and between the lines x = a
and x = b.

Or simply, the area under the curve y = f(x) from a to b.

If f takes on both positive and negative values over the interval [a, b], then the

definite integral

∫ b

a

f(x) dx can be interpreted as a net area.

That is,

∫ b

a

f(x) dx = A1 −A2

where A1 is the area of the region above the x-axis and below the graph of f ,
and A2 is the area of the region below the x-axis and above the graph of f .
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Illustration:

∫ b

a

f(x) dx is the area under the curve

y = f(x), from a to b.

∫ b

a

f(x) dx is the net area.
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The Fundamental Theorem of Calculus, Part 2

If f is a continuous on [a, b], then∫ b

a

f(x) dx = F (b)− F (a)

where F is any antiderivative of f , that is, a function such that F ′ = f .

Note:

This theorem says that the value of

∫ b

a

f(x) dx can be obtained by finding an

antiderivative of F of the integrand f , then subtract: F (b)− F (a)
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Solution

Area =

∫ 9

0

g′(x) dx g′(x) ≥ 0 on [0, 9]

=
[
g(x)

]9
0
= g(9)− g(0) Fundamental Theorem of Calculus

= 12− (−7) = 19 Use given values
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Scoring Guidelines

Solution Scoring

(a) g0.x/ D 0: x D 9

g0.x/ DNE: none

g has a critical point at x D 9.

At x D 9, g has a relative maximum because g0.x/

changes from positive to negative there.

2:

8̂
<
:̂

1 : critical point at x D 9

1 : relative maximum with
justification

(b) The graph of g has a point of inflection where g0 changes
from increasing to decreasing or from decreasing to
increasing.

g0 changes from increasing to decreasing at x D 4:2.

Therefore the graph of g has one point of inflection at the
point where x D 4:2.

2:

(
1 : answer

1 : reason

(c) Area D
Z 9

0

g0.x/ dx D
h
g.x/

i9

0

D g.9/ � g.0/ D 12 � .�7/ D 19 3:

8̂
ˆ̂<
ˆ̂̂:

1 : definite integral for area

1 : Fundamental Theorem of
Calculus

1 : answer

(d) P D 1 C 9 C
Z 9

0

q
1 C g00.x/2 dx

2:

(
1 : definite integral

1 : answer

(e) Since g is differentiable, then g is continuous on
0 � x � 9.

g.0/ D �7 < 0 < 12 D g.9/

By the Intermediate Value Theorem, there exists a value of
c, for 0 < c < 9, such that g.c/ D 0.

2:

8̂
<
:̂

1 : conditions

1 : conclusion using the
Intermediate Value Theorem

(f)
Z 9

0

�
1

2
g.x/ � p

x

�
dx D 1

2

Z 9

0

g.x/ dx �
Z 9

0

p
x dx

D 1

2
.27:6/ �

�
2

3
x3=2

�9

0

D 13:8 � 2

3
.27/

D 13:8 � 18 D �4:2

3:

8̂
<
:̂

1 : properties of definite integrals

1 : antiderivative of
p

x

1 : answer

Scoring Notes

First point:

• First point is earned for the correct presentation of the definite integral that represents
the area of the region R.

• Incorrect bounds: does not earn the point.

• Must be a definite integral:

∫
g′(x) dx does not earn the point.

Still eligible for second and third points.

• Notation issues:

∫ 9

0

g′(x)

∫ 9

0

g′(t) dx
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Scoring Notes

Second point:

• The second point is earned for correctly applying the Fundamental Theorem of
Calculus.

Examples:

◦
∫ 9

0

g′(x) dx = g(x)
]9
0

◦ g(x)
]9
0

◦ g(9)− g(0)

•
∫ 9

0

g(x) dx = g(x)
]9
0
= g(9)− g(0) Does not earn the FTC point.
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Scoring Notes

Third point:

• The response must use the values of g(9) and g(0) to earn this point.

• Examples:

g(9)− g(0) = 12− (−7) 1 - 1 - 1

12 + 7 0 - 0 - 1

19 0 - 0 - 0∫
g′(x) dx = g(9)− g(0) = 12 + 7 = 19 0 - 1 - 1
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(d) Write an expression that represents the perimeter of the region R. Do not evaluate
this expression.

Key Concepts

• The Arc Length Formula

If f ′ is continuous on [a, b], then the length of the curve y = f(x), a ≤ x ≤ b, is

L =

∫ b

a

√
1 + [f ′(x)]2 dx

• Using Leibniz notation:

L =

∫ b

a

√
1 +

(
dy

dx

)2

dx
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Solution

P = (Length along y-axis) + (Length along x-axis) + (Arc length from 0 to 9)

= 1 + 9 +

∫ 9

0

√
1 + g′′(x)2 dx
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Scoring Guidelines

Solution Scoring

(a) g0.x/ D 0: x D 9

g0.x/ DNE: none

g has a critical point at x D 9.

At x D 9, g has a relative maximum because g0.x/

changes from positive to negative there.

2:

8̂
<
:̂

1 : critical point at x D 9

1 : relative maximum with
justification

(b) The graph of g has a point of inflection where g0 changes
from increasing to decreasing or from decreasing to
increasing.

g0 changes from increasing to decreasing at x D 4:2.

Therefore the graph of g has one point of inflection at the
point where x D 4:2.

2:

(
1 : answer

1 : reason

(c) Area D
Z 9

0

g0.x/ dx D
h
g.x/

i9

0

D g.9/ � g.0/ D 12 � .�7/ D 19 3:

8̂
ˆ̂<
ˆ̂̂:

1 : definite integral for area

1 : Fundamental Theorem of
Calculus

1 : answer

(d) P D 1 C 9 C
Z 9

0

q
1 C g00.x/2 dx

2:

(
1 : definite integral

1 : answer

(e) Since g is differentiable, then g is continuous on
0 � x � 9.

g.0/ D �7 < 0 < 12 D g.9/

By the Intermediate Value Theorem, there exists a value of
c, for 0 < c < 9, such that g.c/ D 0.

2:

8̂
<
:̂

1 : conditions

1 : conclusion using the
Intermediate Value Theorem

(f)
Z 9

0

�
1

2
g.x/ � p

x

�
dx D 1

2

Z 9

0

g.x/ dx �
Z 9

0

p
x dx

D 1

2
.27:6/ �

�
2

3
x3=2

�9

0

D 13:8 � 2

3
.27/

D 13:8 � 18 D �4:2

3:

8̂
<
:̂

1 : properties of definite integrals

1 : antiderivative of
p

x

1 : answer

Scoring Notes

• The first point is for the correct definite integral.

• The second point is for the correct expression for the perimeter.

• Indefinite integral: 0 points earned.

• Incorrect definite integral: 0 points earned.

• Eligibility: must earn the first point to be eligible for the second point.
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(e) Must there exist a value of c, for 0 < c < 9, such that g(c) = 0? Justify your
answer.

Key Concepts

The Intermediate Value Theorem

Suppose that f is continuous on the closed interval [a, b] and let N be any number
between f(a) and f(b), where f(a) 6= f(b). Then there exists a number c in (a, b) such
that f(c) = N .

A Closer Look

1. Interpretation: f takes on every value between f(a) and f(b).

2. There is at least on c. There may be more than one.

3. This is an existence theorem.
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A Closer Look

4. The conclusion of the IVT is not necessarily true if the function is discontinuous
anywhere in the closed interval.

f is continuous on the closed interval
[a, b]. f takes on every value between f(a)
and f(b).

f is discontinuous. There is no number c
in (a, b) such that f(c) = N .
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Solution

g is differentiable. Therefore g is continuous on the interval [0, 9].

g(0) = −7 < 0 < 12 = g(9)

There exists a value c in (0, 9) such that g(c) = 0 by the IVT.

Scoring Guidelines

Solution Scoring

(a) g0.x/ D 0: x D 9

g0.x/ DNE: none

g has a critical point at x D 9.

At x D 9, g has a relative maximum because g0.x/

changes from positive to negative there.

2:

8̂
<
:̂

1 : critical point at x D 9

1 : relative maximum with
justification

(b) The graph of g has a point of inflection where g0 changes
from increasing to decreasing or from decreasing to
increasing.

g0 changes from increasing to decreasing at x D 4:2.

Therefore the graph of g has one point of inflection at the
point where x D 4:2.

2:

(
1 : answer

1 : reason

(c) Area D
Z 9

0

g0.x/ dx D
h
g.x/

i9

0

D g.9/ � g.0/ D 12 � .�7/ D 19 3:

8̂
ˆ̂<
ˆ̂̂:

1 : definite integral for area

1 : Fundamental Theorem of
Calculus

1 : answer

(d) P D 1 C 9 C
Z 9

0

q
1 C g00.x/2 dx

2:

(
1 : definite integral

1 : answer

(e) Since g is differentiable, then g is continuous on
0 � x � 9.

g.0/ D �7 < 0 < 12 D g.9/

By the Intermediate Value Theorem, there exists a value of
c, for 0 < c < 9, such that g.c/ D 0.

2:

8̂
<
:̂

1 : conditions

1 : conclusion using the
Intermediate Value Theorem

(f)
Z 9

0

�
1

2
g.x/ � p

x

�
dx D 1

2

Z 9

0

g.x/ dx �
Z 9

0

p
x dx

D 1

2
.27:6/ �

�
2

3
x3=2

�9

0

D 13:8 � 2

3
.27/

D 13:8 � 18 D �4:2

3:

8̂
<
:̂

1 : properties of definite integrals

1 : antiderivative of
p

x

1 : answer
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Scoring Notes

• The student must establish that g is a continuous function.
Common response: differentiable implies continuous.

• The student must convey that differentiability implies continuity.
Stating g is differentiable and continuous, does not earn the first point.

• If continuity is mentioned but not established: eligible for the second point.

• Citing the MVT does not earn the second point.

• To earn the second point: must explicitly convey an appropriate inequality involving 0.
Can be presented mathematically or in words.
Examples: −7 < 0 < 12 or g(0) < 0 < g(9)

• Second point requires an answer of yes, or an equivalent statement.
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